Perennisosides I-VII, Acylated Triterpene Saponins with Antihyperlipidemic Activities from the Flowers of Bellis perennis

Toshio Morikawa, ${ }^{\dagger,}{ }^{\dagger}$ Xuezheng Li, ${ }^{\dagger}$ Eriko Nishida, ${ }^{\ddagger}$ Yuki Ito, ${ }^{\dagger}$ Hisashi Matsuda, ${ }^{\dagger}$ Seikou Nakamura, ${ }^{\dagger}$ Osamu Muraoka, ${ }^{\dagger}$ and Masayuki Yoshikawa*, ${ }^{\dagger}$
Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan, and Pharmaceutical Research and Technology Institute, Kinki University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan

Received January 15, 2008

Abstract

The methanolic extract and its saponin fraction (methanol-eluted fraction) of the flowers of Bellis perennis were found to suppress serum triglyceride elevation in olive oil-treated mice. From the saponin fraction, seven new triterpene saponins, perennisosides I (1), II (2), III (3), IV (4), V (5), VI (6), and VII (7), were isolated together with four known saponins, bellidioside A (8), asterbatanoside D (9), bernardioside $\mathrm{B}_{2}(\mathbf{1 0})$, and bellissaponin BS6 (11). The stereostructures of $\mathbf{1 - 7}$ were elucidated on the basis of chemical and spectroscopic evidence. Among these saponins, perennisosides I (1) and II (2) showed inhibitory effects on serum triglyceride elevation at doses of $25-50 \mathrm{mg} / \mathrm{kg}$, po.

The Asteraceae plant Bellis perennis is distributed widely in Europe and North Africa, and the whole flowering plant has been used for bruises, bleeding, muscular pain, purulent skin diseases, and rheumatism in European folk medicine. ${ }^{2}$ This herbal medicine is also well-known as an ornamental plant, and its flowers and young leaves are edible as a salad. The chemical constituents of the roots and flowers of B. perennis, several triterpene saponins, ${ }^{3-11}$ anthocyanins, ${ }^{12}$ flavonoids, ${ }^{13}$ and polyacetylenes, ${ }^{14,15}$ have been reported. During the course of characterization studies on medicinal flowers, ${ }^{1}$ we found that a methanol extract and its saponin fraction of the flowers of B. perennis showed an inhibitory effect on serum triglyceride (TG) elevation in olive oil-treated mice. From this saponin fraction, seven new acylated triterpene saponins named perennisosides I (1), II (2), III (3), IV (4), V (5), VI (6), and VII (7) were isolated together with four known saponins, bellidioside A (8), ${ }^{16}$ asterbatanoside $\mathrm{D}(\mathbf{9}),{ }^{17}$ bernardioside $\mathrm{B}_{2}(\mathbf{1 0}),{ }^{18}$ and bellissaponin BS6 (11). ${ }^{8}$ This paper deals with the structure elucidation of these seven new saponins $(\mathbf{1}-7)$ as well as the antihyperlipidemic activities of $\mathbf{1}$ and $\mathbf{2}$.

Results and Discussion

The flowers of B. perennis cultivated in Albania were extracted with methanol to give a methanolic extract (25.8% from the dried flowers). As shown in Table S 1 (Supporting Information), the methanolic extract significantly suppressed serum TG elevation 2 h after administration of olive oil at a dose of $500 \mathrm{mg} / \mathrm{kg}$, po. The methanolic extract was partitioned into an $\mathrm{EtOAc}-\mathrm{H}_{2} \mathrm{O}(1: 1, \mathrm{v} / \mathrm{v})$ mixture to furnish an EtOAc-soluble fraction (6.7\%) and an aqueous phase. The aqueous phase was subjected to Diaion HP-20 column chromatography $\left(\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MeOH}\right)$ to give $\mathrm{H}_{2} \mathrm{O}$ - and MeOH -eluted fractions (12.5% and 6.4%), respectively. The MeOH -eluted fraction (saponin fraction) significantly suppressed serum TG elevation 2 h after administration of olive oil at a dose of $200 \mathrm{mg} / \mathrm{kg}$, po, and its activity was more potent than that of a hypolipidemic drug, clofibrate. This fraction was subjected to normal- and reversedphase column chromatographies and finally HPLC to give perennisosides I (1, 0.012\%), II (2, 0.011\%), III (3, 0.0026\%), IV (4, $0.0012 \%)$, V (5, 0.0042\%), VI (6, 0.0060\%), and VII (7, 0.0089\%), bellidioside $\mathrm{A}(\mathbf{8}, 0.058 \%)$, asterbatanoside $\mathrm{D}(\mathbf{9}, 0.0063 \%)$, bernardioside $\mathrm{B}_{2}(\mathbf{1 0}, 0.013 \%)$, and bellissaponin $\operatorname{BS} 6(\mathbf{1 1}, 0.023 \%)$.

[^0]Perennisoside I (1) was obtained as an amorphous powder with a positive optical rotation $\left([\alpha]^{26} \mathrm{D}+16.1\right.$ in MeOH$)$. The IR spectrum of 1 showed absorption bands at 1744 and $1655 \mathrm{~cm}^{-1}$ ascribable to ester carbonyl and olefin functions, and broad bands at 3442 and $1075 \mathrm{~cm}^{-1}$ suggestive of an oligoglycoside structure. In the positive- and negative-ion FABMS of $\mathbf{1}$, quasimolecular ion peaks were observed at $m / z 1065[\mathrm{M}+\mathrm{Na}]^{+}$and $1041[\mathrm{M}-\mathrm{H}]^{-}$, and HRFABMS analysis revealed the molecular formula to be $\mathrm{C}_{52} \mathrm{H}_{82} \mathrm{O}_{21}$. The ${ }^{1} \mathrm{H}$ (Table 1) and ${ }^{13} \mathrm{C}$ NMR (Table 2) spectra (pyridine- d_{5}) of $\mathbf{1}$, which were assigned by various NMR experiments, ${ }^{19}$ showed signals assignable to six methyls $[\delta 0.89,0.93$, $1.15,1.23,1.26,1.56$ (3 H each, all s, $\mathrm{H}_{3}-29,30,26,24,27,25$)], a methylene and two methines bearing an oxygen function $[\delta 3.88$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 4.02(1 \mathrm{H}$, brs, $\mathrm{H}-2), 4.12,4.38(1 \mathrm{H}$ each, both d, J $\left.\left.=11.6 \mathrm{~Hz}, \mathrm{H}_{2}-23\right)\right]$, an olefin $[\delta 5.47(1 \mathrm{H}, \mathrm{t}$-like, $J=$ ca. 3 Hz , $\mathrm{H}-12)$, and two glucopyranosyl units and a rhamnopyranosyl moiety $[\delta 5.06(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}$, terminal-Glc- $\mathrm{H}-1), 6.09(1 \mathrm{H}$, $\mathrm{d}, J=6.9 \mathrm{~Hz}$, inner-Glc-H-1), $6.25(1 \mathrm{H}$, brs, Rha-H-1)], together with two acetyl groups $[\delta 1.96,2.01(3 \mathrm{H}$ each, both s , inner-Glc-$6-O-\mathrm{H}_{3}-\mathrm{Ac}$ and $\left.23-\mathrm{O}-\mathrm{H}_{3}-\mathrm{Ac}\right)$]. Treatment of 1 with 0.5% sodium methoxide $(\mathrm{NaOMe})-\mathrm{MeOH}$ provided a new saponin, desacylperennisoside I (1a). Acid hydrolysis of 1a with 5% aqueous sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)-1$, 4-dioxane (1:1) liberated bayogenin (1b) ${ }^{20}$ together with L-rhamnose and D-glucose, which were identified by HPLC analysis. ${ }^{21}$ The 28-O-oligoglycoside structure of 1a was characterized by the heteronuclear multiple-bond correlations (HMBC) experiment, in which long-range correlations were observed between the following proton and carbon pairs: inner-Glc-H-1 [$\delta 6.22(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz})$] and C-28 $\left(\delta_{\mathrm{C}} 176.3\right)$, Rha-$\mathrm{H}-1[\delta 6.49(1 \mathrm{H}, \mathrm{brs})]$ and inner-Glc-C-2 $\left(\delta_{\mathrm{C}} 75.5\right)$, and terminal-Glc-H-1 [$\delta 5.17(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz})]$ and inner-Glc-C-3 $\left(\delta_{\mathrm{C}} 88.1\right)$. Consequently, the structure of desacyl-perennisoside I was elucidated as bayogenin 28 - O - α-L-rhamnopyranosyl $(1 \rightarrow 2)[\beta$-D-glucopy$\operatorname{ranosyl}(1 \rightarrow 3)]-\beta$-D-glucopyranoside (1a). Furthermore, comparison of the ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1}$ with those of $\mathbf{1 a}$ revealed two acetylation shifts around the $\mathrm{C}-23$ position of the aglycon moiety [1: $\delta_{\mathrm{C}} 41.6(\mathrm{C}-4), 67.4(\mathrm{C}-23), 14.1(\mathrm{C}-24) ; 1 \mathrm{a}: \delta_{\mathrm{C}} 42.5(\mathrm{C}-4), 67.9$ (C-23), $14.6(\mathrm{C}-24)]$ and the $\mathrm{C}-6$ position of the inner- β-Dglucopyranosyl part [1: $\delta_{\mathrm{C}} 75.0$ (inner-Glc-C-5), 64.0 (inner-Glc-C-6); 1a: $\delta_{\mathrm{C}} 78.4$ (inner-Glc-C-5), 62.0 (inner-Glc-C-6)]. In the HMBC experiment of $\mathbf{1}$, long-range correlations were observed between $\mathrm{H}_{2}-23$ and the acetyl carbonyl carbon ($\delta_{\mathrm{C}} 170.7$) and between inner-Glc- $\mathrm{H}_{2}-6[\delta 4.58(1 \mathrm{H}$, dd, $J=4.2,11.0 \mathrm{~Hz}), 4.62$ $(1 \mathrm{H}, \mathrm{m})$] and the acetyl carbonyl carbon $\left(\delta_{\mathrm{C}} 170.5\right)$, as shown in Figure 1. On the basis of the above-mentioned evidence, the

Table 1. ${ }^{1} \mathrm{H}$ NMR Data (600 MHz , pyridine- d_{5}) of Perennisosides I (1), II (2), and III (3) and Desacyl Perennisosides I (1a) and II (2a)

[^1]structure of perennisoside I was determined as 23-O-acetylbayogenin 28-O- α-L-rhamnopyranosyl $(1 \rightarrow 2)[\beta$-D-glucopyranosyl $(1 \rightarrow 3)]$ -$6-O$-acetyl- β-D-glucopyranoside (1).
Perennisoside II (2) was also obtained as an amorphous powder with a positive optical rotation $\left([\alpha]^{26}{ }_{D}+19.5\right.$ in MeOH$)$. The IR spectrum of 2 showed absorption bands at $3445,1745,1655$, and
$1070 \mathrm{~cm}^{-1}$, ascribable to hydroxyl, ester carbonyl, olefin, and ether functions. The molecular formula, $\mathrm{C}_{52} \mathrm{H}_{82} \mathrm{O}_{21}$, of $\mathbf{2}$ was determined from the positive- and negative-ion FABMS ($\mathrm{m} / \mathrm{z} 1065[\mathrm{M}+\mathrm{Na}]^{+}$ and $1041[\mathrm{M}-\mathrm{H}]^{-}$, respectively) and by HRFABMS, which was the same as that of $\mathbf{1}$. Treatment of $\mathbf{2}$ with $0.5 \% \mathrm{NaOMe}-\mathrm{MeOH}$ yielded a new saponin, desacyl perennisoside II (2a). Acid

Table 2. ${ }^{13} \mathrm{C}$ NMR Data (150 MHz, pyridine- d_{5}) of Perennisosides I (1), II (2) III (3), IV (4), V (5), VI (6), and VII (7) and Desacyl-perennisosides I (1a), II (2a), and IV (4a)

position	1	1a	2	2a	3	4	4a	5	6	7
1	44.9	45.1	44.9	45.1	44.3	44.3	44.2	43.9	43.9	44.1
2	71.4	71.6	71.4	71.6	70.6	70.6	70.7	70.2	70.2	70.2
3	71.9	73.2	71.9	73.2	83.0	83.0	83.0	83.1	83.1	83.1
4	41.6	42.5	41.6	42.5	42.8	42.8	42.8	41.6	41.6	41.7
5	48.4	48.3	48.4	48.3	47.8	47.8	47.8	48.5	48.5	48.4
6	18.5	18.4	18.5	18.4	18.1	18.1	18.1	18.2	18.2	18.2
7	33.0	33.1	33.0	33.1	33.1	33.1	33.1	33.0	33.0	33.0
8	40.1	40.1	40.1	40.1	40.1	40.1	40.1	40.1	40.1	40.1
9	48.8	48.8	48.8	48.6	48.6	48.6	48.6	48.8	48.6	48.7
10	37.2	37.3	37.2	37.3	37.0	37.0	37.0	37.0	37.0	37.0
11	24.0	24.1	24.0	24.1	24.0	24.1	24.1	24.0	24.0	24.0
12	122.8	122.8	122.8	122.8	123.0	122.9	122.9	122.7	122.7	122.9
13	144.1	144.3	144.1	144.3	144.1	144.1	144.2	144.2	144.2	144.0
14	42.4	42.4	42.4	42.4	42.4	42.5	42.5	42.4	42.5	42.4
15	28.4	28.6	28.4	28.6	28.5	28.5	28.6	28.5	28.5	28.4
16	23.3	23.3	23.3	23.3	23.3	23.3	23.3	23.3	23.3	23.3
17	47.2	47.1	47.2	47.1	47.2	47.2	47.1	47.2	47.2	47.2
18	42.1	42.1	42.1	42.1	42.0	42.0	42.1	42.2	42.3	42.2
19	46.5	46.4	46.5	46.4	46.3	46.3	46.4	46.4	46.4	46.4
20	30.7	30.7	30.7	30.7	30.7	30.7	30.7	30.7	30.7	30.7
21	34.1	34.1	34.1	34.1	34.1	34.1	34.0	34.1	34.1	34.1
22	32.3	32.2	32.3	32.2	32.3	32.3	32.2	32.2	32.2	32.3
23	67.4	67.9	67.4	67.9	65.5	65.5	65.5	66.7	66.7	66.6
24	14.1	14.6	14.1	14.6	15.1	15.1	15.1	14.7	14.7	14.7
25	17.3	17.4	17.3	17.4	17.4	17.4	17.4	17.2	17.2	17.2
26	17.5	17.6	17.5	17.6	17.5	17.5	17.6	17.5	17.5	17.5
27	25.7	26.0	25.7	26.0	26.0	26.0	26.0	25.7	25.7	25.7
28	176.3	176.3	176.3	176.3	176.4	176.3	176.4	176.3	176.3	176.4
29	33.1	33.1	33.1	33.1	33.1	33.1	33.1	33.1	33.1	33.1
30	23.7	23.7	23.7	23.7	23.7	23.6	23.7	23.6	23.6	23.6
23-O-Ac-1	170.7		170.6					170.8	170.8	170.8
2	20.7		20.7					20.9	20.9	20.9
C-3-sugar					(Glc)	(Glc)	(Glc)	(Glc)	(Glc)	(Glc)
1					105.8	105.8	105.8	106.1	106.1	106.1
2					75.4	75.5	75.4	75.1	75.3	75.3
3					78.3	78.3	78.3	78.5	78.5	78.5
4					71.6	71.6	71.6	71.6	71.6	71.6
5					78.6	78.6	78.6	78.6	78.6	78.6
6					62.6	62.6	62.7	62.7	62.7	62.7
C-28-sugars	$(i-\mathrm{Glc})^{a}$	$(i-\mathrm{Glc})^{a}$	(Glc)	(Glc)	$(i-\mathrm{Glc})^{a}$	(Glc)	(Glc)	$(i-\mathrm{Glc})^{a}$	(Glc)	(Glc)
1	94.2	94.5	94.2	94.4	94.2	94.2	94.4	94.5	94.5	94.3
2	75.4	75.2	75.5	75.4	75.5	75.5	75.5	75.3	75.3	75.4
3	88.2	88.9	88.2	88.9	88.2	88.2	88.9	88.9	89.0	88.3
4	69.4	69.1	69.4	69.2	69.4	69.4	69.2	69.1	69.2	69.3
5	75.0	78.4	75.1	78.5	74.9	75.0	78.5	78.4	75.2	75.0
6	64.0	62.0	63.9	62.0	64.1	64.1	61.9	61.9	62.1	63.9
$6-O-\mathrm{Ac}-1$	170.5		170.5		170.6	170.6				170.6
2	20.6									
	(Rha)									
1	101.2	101.2	101.3	101.3	101.4	101.4	101.3	101.2	101.2	101.3
2	72.1	72.4	72.2	72.4	72.3	72.3	72.4	72.3	72.4	72.3
3	72.4	72.6	72.5	72.6	72.5	72.5	72.6	72.5	72.6	72.5
4	73.7	73.8	73.7	73.8	73.7	73.7	73.7	73.8	73.8	73.8
5	70.1	70.1	70.0	70.1	70.2	70.2	70.1	70.1	70.1	70.1
6	18.7	18.8	18.7	18.8	18.8	18.8	18.8	18.8	18.8	18.9
	$(t \text {-Glc })^{b}$ 104.1	$(t-\mathrm{Glc})^{b}$ 104.1	(Gal) 104.7	(Gal) 104.7	$(t \text {-Glc })^{b}$ 104.1	(Gal) 104.7	(Gal) 104.7	$\begin{aligned} & (t \text {-Glc })^{b} \\ & 104.8 \end{aligned}$	(Gal) 104.8	(Gal) 104.8
2	104.1 74.8	104.1 75.1	104.7 72.4	104.7 72.6	104.1 75.1	104.7 72.5	104.7 72.6	104.8 75.1	104.8 72.6	104.8 72.5
3	78.4	78.5	77.4	77.5	78.5	77.5	77.5	78.5	77.5	77.6
4	71.5	71.6	70.1	70.1	71.6	70.0	70.1	71.6	70.0	70.2
5	78.5	78.7	74.9	75.2	78.7	75.1	75.2	78.7	75.3	75.2
6	62.4	62.4	62.1	62.1	62.4	62.1	62.1	62.4	62.0	62.1

${ }^{a} i$-Glc: inner Glc. ${ }^{b} t$-Glc: terminal Glc.
hydrolysis of 2a with 5% aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}-1,4$-dioxane (1:1) liberated bayogenin ($\mathbf{1 b})^{20}$ together with L-rhamnose, D-glucose, and D-galactose, which were identified by HPLC analysis. ${ }^{21}$ The ${ }^{1} \mathrm{H}$ (Table 1) and ${ }^{13} \mathrm{C}$ NMR (Table 2) spectra $\left(\text { pyridine }-d_{5}\right)^{19}$ of 2a showed signals assignable to six methyls [$\delta 0.78,0.85,1.23,1.24$, $1.35,1.67$ (3 H each, all s, $\mathrm{H}_{3}-30,29,27,26,24,25$)], a methylene and two methines bearing an oxygen function [$\delta 3.65,4.14(1 \mathrm{H}$ each, both d, $\left.J=10.1 \mathrm{~Hz}, \mathrm{H}_{2}-23\right), 4.26(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 4.53(1 \mathrm{H}$,
brs, H-2)], an olefin [$\delta 5.50(1 \mathrm{H}, \mathrm{t}$-like, $J=\mathrm{ca} .3 \mathrm{~Hz}, \mathrm{H}-12)$], a β-D-galactopyranosyl [$\delta 5.07(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}$, Gal-H-1)], a β-Dglucopyranosyl $[\delta 6.18(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}$, Glc-H-1)], and an $\alpha-\mathrm{L}-$ rhamnopyranosyl moiety [$\delta 6.45$ (1H, brs, Rha-H-1)], which were superimposable on those of 1a, except for the signals due to the β-D-galactopyranosyl unit. Comparison of the ${ }^{13} \mathrm{C}$ NMR data for $\mathbf{2}$ with those for $\mathbf{2 a}$ revealed acetylation shifts around the C-23 position of the aglycon moiety [1: $\delta_{\mathrm{C}} 41.6$ (C-4), 67.4 (C-23), 14.1

Figure 1. Selected HMBC correlations of 1.
(C-24); 1a: $\delta_{\mathrm{C}} 42.5$ (C-4), 67.9 (C-23), 14.6 (C-24)] and the C-6 position of the inner- β-D-glucopyranosyl part [2: $\delta_{\mathrm{C}} 75.1$ (inner-Glc-C-5), 63.9 (inner-Glc-C-6); 2a: $\delta_{\mathrm{C}} 78.5$ (inner-Glc-C-5), 62.0 (inner-Glc-C-6)]. Furthermore, the positions of two acetyl groups and the oligoglycoside linkage in $\mathbf{2}$ were characterized in an HMBC experiment, which showed long-range correlations between the following proton and carbon pairs: $\mathrm{H}_{2}-23$ and the acetyl carbonyl carbon (δ_{C} 170.6), Glc- $\mathrm{H}_{2}-6$ and the acetyl carbonyl carbon (δ_{C} 170.5), Glc-H-1 and C-28 ($\delta_{\mathrm{C}} 176.3$), Rha-H-1 and Glc-C-2 (δ_{C} 75.5), and Gal-H-1 and Glc-C-3 (δ_{C} 88.2) (Figure S1). Consequently, the structure of perennisoside II was elucidated as $23-\mathrm{O}$ acetylbayogenin 28-O- α-L-rhamnopyranosyl $(1 \rightarrow 2)[\beta$-D-galactopyranosyl ($1 \rightarrow 3$)]-6-O-acetyl- β-d-glucopyranoside (2).
Perennisosides III (3) and IV (4) were obtained as amorphous powders with positive optical rotations (3: $[\alpha]^{27}{ }_{D}+1.7,4:[\alpha]^{27}{ }_{\mathrm{D}}$ +4.6 both in MeOH). The molecular formula, $\mathrm{C}_{56} \mathrm{H}_{90} \mathrm{O}_{25}$, of both 3 and $\mathbf{4}$ was determined from the positive- and negative-ion FABMS $\left(m / z 1185[\mathrm{M}+\mathrm{Na}]^{+}\right.$and $\left.1161[\mathrm{M}-\mathrm{H}]^{-}\right)$and by HRFABMS. By treatment of $\mathbf{3}$ and $\mathbf{4}$ with $0.5 \% \mathrm{NaOMe}-\mathrm{MeOH}$, besysaponin $\mathrm{U}_{\mathrm{D} 2}(\mathbf{3 a})^{22}$ and desacyl-perennisoside IV (4a), respectively were obtained. The ${ }^{1} \mathrm{H}$ (Table 1) and ${ }^{13} \mathrm{C}$ NMR (Table 2) spectra (pyridine- $\left.d_{5}\right)^{19}$ of $\mathbf{3}$ indicated the presence of an aglycon part, constructed by six methyls $[\delta 0.87,0.91,1.17,1.23,1.34,1.62$ (3 H each, all $\mathrm{s}, \mathrm{H}_{3}-29,30,26,27,24,25$)], a methylene and two methines bearing an oxygen function [$\delta 4.33(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 4.83$ $(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=$ ca. $3 \mathrm{~Hz}, \mathrm{H}-2), 3.63(1 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}), 4.35(1 \mathrm{H}$, d, $J=11.6 \mathrm{~Hz}), \mathrm{H}_{2}-23$], an olefin [$\delta 5.47(1 \mathrm{H}, \mathrm{t}$-like, $J=\mathrm{ca} 3$. $\mathrm{Hz}, \mathrm{H}-12)$], three β-d-glucopyranosyl units [$\delta 5.14(1 \mathrm{H}, \mathrm{d}, J=7.9$ $\mathrm{Hz}, 28-O$-terminal-Glc-H-1), $5.18(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, 3-O$-Glc-$\mathrm{H}-1), 6.15(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, 28-O$-inner-Glc-H-1)], an $\alpha-\mathrm{L}-$ rhamnopyranosyl moiety $[\delta 6.38(1 \mathrm{H}$, brs, Rha-H-1)], together with an acetyl group $\left[\delta 1.95\left(3 \mathrm{H}, \mathrm{s}\right.\right.$, inner-Glc-6-O- $\left.\left.\mathrm{H}_{3}-\mathrm{Ac}\right)\right]$. The connectivity of the acetyl group in $\mathbf{3}$ was clarified by an HMBC experiment, which showed long-range correlations between the C-6 protons of the $28-O$-inner-Glc $[\delta 4.68(2 \mathrm{H}, \mathrm{m})]$ and the acetyl carbonyl carbon ($\delta_{\mathrm{C}} 170.6$). Consequently, the structure of perennisoside III was established as $3-O-\beta$-D-glucopyranoside of bayogenin 28-O- α-L-rhamnopyranosyl $(1 \rightarrow 2)[\beta$-D-glucopyranosyl $(1 \rightarrow 3)]$ -6-O-acetyl- β-D-glucopyranoside (3). In turn, acid hydrolysis of 4a with 5% aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}-1$, 4-dioxane (1:1) liberated bayogenin $(\mathbf{1 b})^{20}$ together with L-rhamnose, D-glucose, and D-galactose, which were identified by HPLC analysis. ${ }^{21}$ The proton and carbon signals in the ${ }^{1} \mathrm{H}$ (Table 3) and ${ }^{13} \mathrm{C}$ NMR (Table 2) spectra $\left(\text { pyridine }-d_{5}\right)^{19}$
of 4 resembled those of $\mathbf{3}$, except for the signals due to the β-Dgalactopyranosyl part [$\delta 5.04(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, \mathrm{Gal}-\mathrm{H}-1)$]. The HMBC experiment on 4 showed long-range correlations between the following proton and carbon pairs: 3-O-Glc-H-1 [$\delta 5.18(1 \mathrm{H}$, d, $J=7.7 \mathrm{~Hz}$)] and C-3 ($\delta_{\mathrm{C}} 83.0$), 28-O-inner-Glc- $\mathrm{H}_{2}-6[\delta 4.66$ $(2 \mathrm{H}, \mathrm{m})]$ and the acetyl carbonyl carbon ($\delta_{\mathrm{C}} 170.6$), 28-O-inner-Glc-H-1 $[\delta 6.11(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz})]$ and C-28 ($\delta_{\mathrm{C}} 176.3$), Rha-$\mathrm{H}-1\left[\delta 6.36(1 \mathrm{H}\right.$, brs) $]$ and 28-O-inner-Glc-C-2 ($\delta_{\mathrm{C}} 75.5$), and 28-O-terminal-Glc-H-1 [$\delta 5.04(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz})]$ and 28 -O-inner-Glc-C-3 ($\delta_{\mathrm{C}} 88.2$). On the basis of the above-mentioned evidence, the structure of perennisoside IV was elucidated as $3-O-\beta$-Dglucopyranoside of bayogenin 28-O- α-L-rhamnopyranosyl $(1 \rightarrow 2)[\beta-$ D-galactopyranosyl $(1 \rightarrow 3)]-6-O$-acetyl- β-D-glucopyranoside (4).

The molecular formulas of perennisoside $\mathrm{V}(\mathbf{5})$ and $\mathrm{VI}(\mathbf{6})$, both $\mathrm{C}_{56} \mathrm{H}_{90} \mathrm{O}_{25}$, were determined from their respective positive- and negative-ion FABMS ($\mathrm{m} / \mathrm{z} 1185[\mathrm{M}+\mathrm{Na}]^{+}$and $1161[\mathrm{M}-\mathrm{H}]^{-}$) and by HRFABMS data. By treatment of 5 and $\mathbf{6}$ with 0.5% $\mathrm{NaOMe}-\mathrm{MeOH}, 3 \mathrm{3a}$ and $\mathbf{4 a}$ were obtained as their respective desacyl derivative. The proton and carbon signals in the ${ }^{1} \mathrm{H}$ (Table $3)$ and ${ }^{13} \mathrm{C}$ NMR (Table 2) spectra (pyridine- $\left.d_{5}\right)^{19}$ of 5 showed signals assignable to a besysaponin $\mathrm{U}_{\mathrm{D} 2}$ moiety and an acetyl group [$\left.\delta 2.05\left(3 \mathrm{H}, \mathrm{s}, 23-\mathrm{O}-\mathrm{H}_{3}-\mathrm{Ac}\right)\right]$. The connectivity of the acetyl moiety in 5 was characterized by an HMBC experiment, which exhibited a long-range correlation between the C-23 protons [$\delta 4.22$ (1 H , $\mathrm{m}), 4.70(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz})]$ and the acetyl carbonyl carbon $\left(\delta_{\mathrm{C}}\right.$ 170.8). Thus, the structure of perennisoside V was assigned as $3-O-$ β-D-glucopyranoside of 23-O-acetylbayogenin 28-O α-L-rhamnopyranosyl $(1 \rightarrow 2)[\beta$-D-glucopyranosyl $(1 \rightarrow 3)]-\beta$-D-glucopyranoside (5). The signals in the ${ }^{1} \mathrm{H}$ (Table 3) and ${ }^{13} \mathrm{C}$ NMR (Table 2) spectra (pyridine- $\left.d_{5}\right)^{19}$ of $\mathbf{6}$ were very similar to those of $\mathbf{4}\{$ six methyls [$\delta 0.78,0.86,1.20,1.28,1.29,1.55$ (3 H each, all s, $\mathrm{H}_{3}-29,30,26$, $24,27,25)$], a methylene and two methines bearing an oxygen function $[\delta 4.02(1 \mathrm{H}$, brs, $\mathrm{H}-3), 4.22,4.70(1 \mathrm{H}$ each, both d, $J=$ $\left.11.3 \mathrm{~Hz}, \mathrm{H}_{2}-23\right)$, $4.78(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2)$], an olefin [$\delta 5.49(1 \mathrm{H}, \mathrm{t}$-like, $J=\mathrm{ca} .3 \mathrm{~Hz}, \mathrm{H}-12)$], two β-D-glucopyranosyls [$\delta 5.00(1 \mathrm{H}, \mathrm{d}, J$ $=8.0 \mathrm{~Hz}, 3-O-\mathrm{Glc}-\mathrm{H}-1), 6.18(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, 28-O-\mathrm{Glc}-\mathrm{H}-$ 1)], a β-D-galactopyranosyl [$\delta 5.06(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}$, Gal-H-1)], and an α-L-rhamnopyranosyl moiety [$\delta 6.45$ (1 H , brs, Rha-H-1)], and an acetyl group $\left.\left[\delta 2.05\left(3 \mathrm{H}, \mathrm{s}, 23-\mathrm{O}-\mathrm{H}_{3}-\mathrm{Ac}\right)\right]\right\}$. The connectivity of the acetyl group of $\mathbf{6}$ was elucidated on the basis of an HMBC experiment, in which long-range correlation was observed between the C-23 protons and the acetyl carbonyl carbon ($\delta_{\mathrm{C}} 170.8$). Consequently, the structure of perennisoside VI was determined as 3-O- β-D-glucopyranoside of 23-O-acetylbayogenin $28-O-\alpha$-Lrhamnopyranosyl $(1 \rightarrow 2)[\beta$-D-galactopyranosyl $(1 \rightarrow 3)]-\beta$-D-glucopyranoside (6).

Perennisoside VII (7) was obtained as an amorphous powder with positive optical rotation $\left([\alpha]^{25}{ }_{D}+14.3\right.$, in MeOH$)$. In the positive- and negative-ion FABMS of 7, quasimolecular ion peaks were observed at $m / z 1227[\mathrm{M}+\mathrm{Na}]^{+}$and $1203[\mathrm{M}-\mathrm{H}]^{-}$, and HRFABMS analysis revealed the molecular formula to be $\mathrm{C}_{58} \mathrm{H}_{92} \mathrm{O}_{26}$. Treatment of 7 with $0.5 \% \mathrm{NaOMe}-\mathrm{MeOH}$ liberated 4a. Comparison of the ${ }^{1} \mathrm{H}$ (Table 3) and ${ }^{13} \mathrm{C}$ NMR (Table 2) spectra $\left(\text { pyridine- } d_{5}\right)^{19}$ of 7 with those of 6 showed the presence of an additional acetyl group observed at the $\mathrm{C}-6$ position in the $28-\mathrm{O}$ -β-D-glucopyranosyl part [$\delta 1.97$ ($3 \mathrm{H}, \mathrm{s}, 28-\mathrm{O}-\mathrm{Glc}-6-\mathrm{O}-\mathrm{H}_{3}-\mathrm{Ac}$), $\left.4.63\left(2 \mathrm{H}, \mathrm{m}, 28-\mathrm{O}-\mathrm{Glc}^{2} \mathrm{H}_{2}-6\right)\right]$. In the HMBC experiment of 7, longrange correlations were observed between the $\mathrm{C}-23$ protons [$\delta 4.25$ $(1 \mathrm{H}, \mathrm{m}), 4.71(1 \mathrm{H}, \mathrm{d}, J=11.3 \mathrm{~Hz})]$ and the acetyl carbonyl carbon ($\delta_{\mathrm{C}} 170.8$) and between the $\mathrm{C}-6$ protons in the $28-O-\beta$-Dglucopyranosyl part and the acetyl carbonyl carbon ($\delta_{\mathrm{C}} 170.6$). Consequently, the structure of perennisoside VII was elucidated as 3-O- β-D-glucopyranoside of 23-O-acetylbayogenin $28-O-\alpha-\mathrm{L}-$ rhamnopyranosyl $(1 \rightarrow 2)[\beta$-D-galactopyranosyl $(1 \rightarrow 3)]-6-O$-acetyl- β -D-glucopyranoside (7).

The effects of the principal new saponin constituents (1 and $\mathbf{2}$) of B. perennis on serum TG elevation in olive oil-treated mice were

Table 3. ${ }^{1} \mathrm{H}$ NMR Data (600 MHz , pyridine- d_{5}) of Perennisosides IV (4), V (5), VI (6), and VII (7) and Desacyl-perennisoside IV (4a)

position	4	4a	5	6	7
1	1.20 m	1.22 m	1.18 m	1.16 m	1.24 m
	2.30 brd,ca13	2.39 brd,ca. 12	2.28 dd-like	2.26 brd,ca. 13	2.30 brd,ca. 13
2	4.83 brs	4.83 brs	4.80 brd, ca 3	4.78 m	4.82 m
3	4.33 brs	4.34 brs	4.02 brs	4.02 brs	4.03 m
5	1.77 m	1.79 m	1.50 m	1.50 m	1.47 m
6	1.23 m	1.28 m	1.22 m	1.20 m	1.24 m
	1.72 m	1.80 m	1.70 m	1.70 m	1.81 m
7	1.55 m	1.54 m	1.57 m	1.53 m	1.50 m
	1.69 m	1.71 m	1.72 m	1.70 m	1.77 m
9	1.67 m	1.73 m	1.72 m	1.70 m	1.72 m
11	2.01 m	2.04 m	2.04 m	2.04 m	2.03 m
	2.14 m	2.16 m	2.15 m	2.15 m	2.17 m
12	5.46 t-like,ca. 3	5.48 t-like,ca. 3	5.50 t-like,ca. 3	5.49 t-like,ca. 3	5.47 t-like,ca. 3
15	1.47 m	1.47 m	1.47 m	1.50 m	1.50 m
	2.04 m	2.04 m	2.07 m	2.10 m	2.05 m
16	2.01 m	2.04 m	2.05 m	2.02 m	2.05 m
	2.16 m	2.17 m	2.18 m	2.17 m	2.21 m
18	$3.12 \mathrm{dd}, 4.0,13.4$	3.10 dd,4.2,13.1	$3.11 \mathrm{dd}, 3.7,13.5$	3.11 dd, 4.0,13.7	3.14 dd,4.0,14.3
19	1.17 m	1.23 m	1.28 m	1.25 m	1.29 m
	1.74 m	1.78 m	1.80 brd,cal4	1.78 dd-like	1.81 m
21	1.14 m	1.08 m	1.15 m	1.15 m	1.15 m
	1.34 m	1.36 m	1.37 m	1.37 m	1.37 m
22	1.77 m	1.78 m	1.80 m	1.80 m	1.81 m
	2.01 m	1.87 m	2.04 m	2.04 m	2.00 m
23	3.62 d, 10.7	3.62 d, 11.0	4.22 d, 11.0	$4.22 \mathrm{~d}, 11.3$	4.25 d, 11.3
	4.36 d, 10.7	4.37 d, 11.0	4.70 d, 11.0	4.70 d, 11.3	4.71 d, 11.3
24	1.34 s	1.34 s	1.28 s	1.28 s	1.28 s
25	1.63 s	1.62 s	1.55 s	1.55 s	1.56 s
26	1.18 s	1.22 s	1.20 s	1.20 s	1.17 s
27	1.23 s	1.23 s	1.29 s	1.29 s	1.29 s
29	0.86 s	0.85 s	0.79 s	0.78 s	0.88 s
30	0.90 s	0.78 s	0.86 s	0.86 s	0.91 s
$23-\mathrm{O}-\mathrm{Ac}$			2.05 s	2.05 s	2.08 s
C-3-sugar	(Glc)	(Glc)	(Glc)	(Glc)	(Glc)
1	5.18 d, 7.7	$5.20 \mathrm{~d}, 7.6$	$5.00 \mathrm{~d}, 7.9$	$5.00 \mathrm{~d}, 8.0$	$5.01 \mathrm{~d}, 7.6$
2	4.06 m	$4.05 \mathrm{dd}, 7.6,8.2$	4.00 m	4.00 m	4.01 m
3	4.18 m	4.19 m	4.17 m	4.17 m	4.23 m
4	4.24 m	4.18 m	4.21 m	4.21 m	4.22 m
5	3.91 m	3.92 m	3.94 m	3.94 m	4.23 m
6	4.35 m	4.35 m	4.25 m	4.26 m	4.30 m
	4.49 m	4.48 m	4.50 m	4.43 m	4.53 m
C-28-sugars	(Glc)	(Glc) ${ }_{6}$	$(i-\text {-Glc })^{a}$ $6.21 \mathrm{~d}, 7.3$	(Glc) ${ }^{\text {c/i }}$	(Glc)
2	$6.11 \mathrm{~d}, 7.6$ 4.41 m	$6.16 \mathrm{~d}, 7.6$ $4.45 \mathrm{dd}, 7.6,7.6$	$6.21 \mathrm{~d}, 7.3$ 4.45 dd -like	$6.18 \mathrm{~d}, 7.6$ 4.45 dd -like	$6.12 \mathrm{~d}, 7.7$ 4.41 m
3	4.24 m	4.28 m	4.32 m	4.28 m	4.23 m
4	4.04 m	4.32 m	4.03 m	4.03 m	4.04 m
5	4.04 m	3.97 m	4.03 m	4.03 m	4.00 m
6	4.66 m (2H)	$4.24 \mathrm{~m}$	$4.29 \mathrm{~m}$	$4.24 \mathrm{~m}$	4.63 m (2H)
		4.35	4.38 m	$4.35 \mathrm{~m}$	
6-O-Ac	$1.97 \mathrm{~s}$				$1.97 \mathrm{~s}$
	(Rha) 6.36 brs	(Rha) 6.45 brs	(Rha) 6.48 brs	(Rha) 6.45 brs	(Rha) 6.26 brs
2	4.77 m	4.80 m	4.78 m	4.78 m	4.79 m
3	4.49 m	4.51 m	4.50 m	4.50 m	4.49 m
4	$4.29 \mathrm{dd}, 9.2,9.2$	4.30 m	4.28 m	4.28 m	4.27 m
5	4.46 m	4.48 m	4.48 m	4.48 m	4.47 m
6	$1.73 \mathrm{~d}, 5.8$	1.74 d, 6.2	$1.75 \mathrm{~d}, 6.1$	$1.73 \mathrm{~d}, 6.2$	$1.72 \mathrm{~d}, 6.1$
	(Gal)	(Gal)	$(t \text {-Glc })^{b}$	(Gal)	(Gal)
1	5.04 d, 7.4	$5.07 \mathrm{~d}, 7.6$	5.16 d, 7.9	5.06 d, 7.7	$5.03 \mathrm{~d}, 0.0$
2	4.51 m	4.53 m	4.54 m	4.54 m	4.51 m
3	4.18 m	4.20 m	4.20 m	4.20 m	4.20 m
4	4.46 m	4.52 m	4.45 m	4.45 m	4.44 m
5	$4.10 \mathrm{dd}, 3.0,9.5$	$4.12 \mathrm{dd}, 2.8,8.9$	4.09 m	4.09 m	4.11 m
6	4.35 m	4.35 m	4.28 m	4.35 m	4.37 dd, 4.6,11.6
	4.53 m	4.53 m	4.60 dd, 2.2,11.6	4.50 m	4.51 m

${ }^{a} i$-Glc: inner Glc. ${ }^{b} t$-Glc: terminal Glc.
examined. As shown in Table 4, a reference compound, clofibrate, which reduces TG through peroxisome proliferator-activated recep-tor- α (PPAR α)-mediated stimulation of fatty acid oxidation, increased LPL synthesis, and reduced expression of apoCIII as a mechanism of action, ${ }^{23}$ showed a weak effect. In contrast, a standard lipase inhibitor, orlistat, ${ }^{24}$ showed a potent effect in this assay model (Table 4). Among the principal saponin constituents, $\mathbf{1}$ and 2
significantly suppressed the increase in serum TG levels 2 h after administration of olive oil at doses of $25-50 \mathrm{mg} / \mathrm{kg}$, po (Table 4).

Experimental Section

General Experimental Procedures. The following instruments were used to obtain physical data: specific rotations, Horiba SEPA-300 digital polarimeter ($l=5 \mathrm{~cm}$); UV spectra, Shimadzu UV-1600 spectrometer;

Table 4. Inhibitory Effects of Perennisosides I (1) and II (2) on Serum Triglyceride Elevation in Olive Oil-Treated Mice

treatment	$\begin{gathered} \text { dose } \\ (\mathrm{mg} / \mathrm{kg}, \text { p.o. }) \end{gathered}$		serum triglyceride ($\mathrm{mg} / \mathrm{dL})^{a}$		
		n	2.0 h	4.0 h	6.0 h
normal		6	141.4 ± 9.1^{c}	101.6 ± 10.7	81.7 ± 9.3
control		6	501.5 ± 64.0	239.0 ± 58.6	167.2 ± 26.6
perennisoside I (1)	25	6	337.0 ± 47.7	357.7 ± 65.6	222.7 ± 41.3
	50	6	$326.9 \pm 50.5^{\text {b }}$	355.8 ± 67.5	203.7 ± 30.7
	100	6	$135.7 \pm 33.5^{\text {c }}$	278.7 ± 78.2	208.2 ± 31.4
control		6	338.5 ± 61.9	207.0 ± 26.3	142.1 ± 18.4
perennisoside II (2)	25	6	$204.6 \pm 25.5{ }^{\text {b }}$	147.0 ± 31.2	87.0 ± 9.5^{c}
	50	6	232.5 ± 31.8	180.4 ± 33.4	104.6 ± 7.5
	100	6	179.4 ± 15.3^{c}	155.6 ± 24.5	80.6 ± 7.5^{c}
normal		10	140.0 ± 7.4^{c}	124.6 ± 9.3^{b}	147.6 ± 7.5
control		10	439.4 ± 34.5	267.5 ± 22.4	244.8 ± 22.0
clofibrate ${ }^{25}$	125	10	377.5 ± 22.8	295.0 ± 40.7	333.4 ± 29.4
	250	10	441.2 ± 25.4	340.5 ± 58.6	443.3 ± 59.2^{c}
	500	10	318.2 ± 18.2^{c}	239.7 ± 28.7	373.5 ± 28.5^{b}
normal		10	154.3 ± 9.3^{c}	138.0 ± 9.8^{c}	138.1 ± 12.3^{c}
		10	387.1 ± 39.2	320.4 ± 61.3	276.5 ± 35.1
orlistat ${ }^{25}$	6.25	10	$266.4 \pm 31.1^{\text {b }}$	$179.3 \pm 17.2^{\text {b }}$	$155.6 \pm 13.2{ }^{\text {c }}$
	12.5	10	187.9 ± 25.5^{c}	176.0 ± 29.5^{c}	189.7 ± 28.8^{b}
	25	10	158.9 ± 28.7^{c}	132.2 ± 10.5^{c}	140.1 ± 13.7^{c}

${ }^{a}$ Values represent the means \pm SEM. ${ }^{b}$ Significantly different from the control group, $p<0.05$. ${ }^{c}$ Significantly different from the control group, $p<0.01$.

Chart 1

IR spectra, Shimadzu FTIR-8100 spectrometer; ${ }^{1} \mathrm{H}$ NMR spectra, JEOL ECA-600 (600 MHz) and JNM-LA500 $(500 \mathrm{MHz})$ spectrometers; ${ }^{13} \mathrm{C}$ NMR spectra, JEOL ECA-600 (150 MHz) and JNM-LA500 (125 MHz) spectrometers with tetramethylsilane as an internal standard; FABMS and HRFABMS, JEOL JMS-SX 102A mass spectrometer; HPLC detector, Shimadzu RID-6A refractive index and SPD-10A UV-vis detectors; HPLC column, Cosmosil 5C C_{18}-MS-II and HILIC (Nacalai Tesque, Inc.) and Wakopak Navi C-30-5 (Wako Pure Chemical Industries Ltd.) $(250 \times 4.6 \mathrm{~mm}$ i.d. and $250 \times 20 \mathrm{~mm}$ i.d. $)$ columns were used for analytical and preparative purposes, respectively.

The following experimental conditions were used for chromatography: normal-phase silica gel column chromatography, silica gel 60 N (Kanto Chemical Co., Ltd., 63-210 mesh, spherical, neutral); reversedphase silica gel column chromatography, Chromatorex ODS DM1020T (Fuji Silysia Chemical, Ltd., 100-200 mesh); TLC, precoated TLC plates with silica gel $60 \mathrm{~F}_{254}$ (Merck, 0.25 mm) (normal-phase) and silica gel RP-18 $\mathrm{F}_{254 \mathrm{~S}}$ (Merck, 0.25 mm) (reversed-phase); reversed-phase HPTLC, precoated TLC plates with silica gel RP-18 $\mathrm{WF}_{254 \mathrm{~S}}$ (Merck, 0.25 mm); detection was carried out by spraying with $1 \% \mathrm{Ce}$ -$\left(\mathrm{SO}_{4}\right)_{2}-10 \%$ aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$, followed by heating.

Plant Material. The flowers of B. perennis cultivated in Albania were purchased from Tochimoto Tenkaido Co., Ltd., Osaka, Japan, in November 2006. The plant material was identified by one of the authors
(M.Y.). A voucher specimen (lot. no. 20860501K) of this plant is on file in our laboratory.

Extraction and Isolation. The dried flowers of B. perennis (3.0 kg) were extracted three times with MeOH under reflux for 3 h . Evaporation of the solvent under reduced pressure provided a MeOH extract $(775.0 \mathrm{~g}, 25.8 \%)$. The methanolic extract (720.0 g) was partitioned between an $\mathrm{EtOAc}-\mathrm{H}_{2} \mathrm{O}(1: 1)$ mixture, and removal of the solvents in vacuo yielded an EtOAc-soluble fraction (187.1 g, 6.7\%) and an aqueous phase. The aqueous phase was subjected to Diaion HP-20 column chromatography ($4.0 \mathrm{~kg}, \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MeOH}$, twice) to give a $\mathrm{H}_{2} \mathrm{O}$-eluted fraction ($350.0 \mathrm{~g}, 12.5 \%$) and a MeOH -eluted fraction ($180.0 \mathrm{~g}, 6.4 \%$). The MeOH -eluted fraction (140.0 g) was subjected to normal-phase silica gel column chromatography $[3.0 \quad \mathrm{~kg}$, $\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(20: 3: 1 \rightarrow 10: 3: 1 \rightarrow 7: 3: 1$, lower layer $\rightarrow 6: 4: 1)$ $\rightarrow \mathrm{MeOH}]$ to give eight fractions [Fr. $1(0.85 \mathrm{~g})$, Fr. $2(5.67$ g), Fr. 3 $(2.41$ g), Fr. $4(1.24$ g), Fr. $5(7.73$ g), Fr. $6(96.05$ g), Fr. $7(10.11$ g), and Fr. $8(16.09 \mathrm{~g})$]. Fraction $6(96.05 \mathrm{~g})$ was subjected to reversedphase silica gel column chromatography [1.5 kg, $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(30: 70$ $\rightarrow 40: 60 \rightarrow 50: 50 \rightarrow 70: 30) \rightarrow \mathrm{MeOH}$] to afford 15 fractions [Fr. 6-1 $(1.398$ g), Fr. 6-2 (3.418 g), Fr. 6-3 (1.148 g), Fr. 6-4 (1.290 g), Fr. 6-5 (0.800 g), Fr. 6-6 (3.179 g), Fr. 6-7 (1.680 g), Fr. 6-8 (2.317 g), Fr. 6-9 (1.216 g), Fr. 6-10 (1.682 g), Fr. 6-11 (4.850 g), Fr. 6-12 (50.269 g), Fr. 6-13 (13.375 g), Fr. 6-14 (2.208 g), and Fr. 6-15 (1.888 g)].

Fraction 6-11 (1820.0 mg) was purified by HPLC [Wakopak Navi C30$5, \mathrm{CH}_{3} \mathrm{CN}-\mathrm{MeOH}-1 \%$ aqueous AcOH (32:16:52)] to afford eight fractions [Fr. 6-11-1 (465.8 mg), Fr. 6-11-2 (272.1 mg), Fr. 6-11-3 $(41.7 \mathrm{mg})$, Fr. 6-11-4 (44.5 mg), Fr. 6-11-5 (263.0 mg), Fr. 6-11-6 $(210.0 \mathrm{mg})$, Fr. 6-11-7 (137.9 mg), and Fr. 6-11-8 (88.6 mg)]. Fraction $6-11-1(465.8 \mathrm{mg})$ was further separated by HPLC [Cosmosil 5C $\mathrm{C}_{18}-$ MS-II, $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(25: 16: 59)$] to furnish perennisoside III $(\mathbf{3}, 10.5 \mathrm{mg}, 0.0012 \%)$ and bernardioside $\mathrm{B}_{2}(\mathbf{1 0}, 112.2 \mathrm{mg}, 0.013 \%)$. Fraction 6-12 (2015.0 mg) was further separated by HPLC [Wakopak Navi C30-5, $\mathrm{CH}_{3} \mathrm{CN}-1 \%$ aqueous AcOH (40:60)] to furnish six fractions [Fr. 6-12-1 (893.3 mg), Fr. 6-12-2 (324.4 mg), Fr. 6-12-3 $(131.3 \mathrm{mg})$, Fr. 6-12-4 (350.4 mg), Fr. 6-12-5 (48.8 mg), and Fr. 6-12-6 $(135.0 \mathrm{mg})$]. Fraction $6-12-1(893.3 \mathrm{mg})$ was separated by HPLC [Cosmosil $5 \mathrm{C}_{18}$-MS-II, $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{MeOH}-1 \%$ aqueous AcOH (32:16:52)] to furnish 14 fractions [Fr. 6-12-1-1 (13.0 mg), Fr. 6-12-1-2 (9.4 mg), Fr. 6-12-1-3 (34.5 mg), Fr. 6-12-1-4 (10.5 mg), Fr. 6-12-1-5 (23.0 mg), Fr. 6-12-1-6 (80.8 mg), Fr. 6-12-1-7 (49.7 mg), Fr. 6-12-1-8 (86.8 mg), Fr. 6-12-1-9 (34.9 mg), Fr. 6-12-1-10 (125.8 mg), Fr. 6-12-1-11 (57.9 mg), Fr. 6-12-1-12 (109.2 mg), Fr. 6-12-1-13 (56.0 mg), and Fr. 6-12-1-14 (22.2 mg)]. Fraction 6-12-1-6 (80.8 mg) was further purified by HPLC [Cosmosil $5 \mathrm{C}_{18}-\mathrm{MS}-\mathrm{II}, \mathrm{CH}_{3} \mathrm{CN}-\mathrm{MeOH}-1 \%$ aqueous AcOH (30:16:54)] to afford bellidioside A ($8,35.3 \mathrm{mg}, 0.039 \%$). Fraction $6-13$ (782.5 mg) was separated by HPLC [Wakopak Navi C30-5, $\mathrm{CH}_{3} \mathrm{CN}-1 \%$ aqueous $\mathrm{AcOH}(40: 60)$] to yield six fractions [Fr. 6-13-1 (77.1 mg), Fr. 6-13-2 (59.5 mg), Fr. 6-13-3 (75.7 mg), Fr. 6-13-4 (34.9 mg), Fr. 6-13-5 (395.9 mg), and Fr. 6-13-6 (114.5 mg)]. Fraction 6-13-1 $(77.1 \mathrm{mg})$ was further purified by HPLC [Wakopak Navi C30-5, $\mathrm{CH}_{3} \mathrm{CN}-1 \%$ aqueous AcOH (33:67)] to furnish perennisoside VII (7, $12.2 \mathrm{mg}, 0.0089 \%$) and $\mathbf{8}(26.0 \mathrm{mg}, 0.019 \%)$. Fraction 6-14 (946.3 mg) was separated by HPLC [Cosmosil $5 \mathrm{C}_{18}-\mathrm{MS}-\mathrm{II}, \mathrm{CH}_{3} \mathrm{CN}-1 \%$ aqueous $\mathrm{AcOH}(40: 60)]$ to afford six fractions $\{\mathrm{Fr} .6-14-1(27.5 \mathrm{mg})$, Fr. 6-14-2 (91.1 mg), Fr. 6-14-3 (162.7 mg), Fr. 6-14-4 [= perennisoside II ($\mathbf{2}, 110.2 \mathrm{mg}, 0.011 \%)$], Fr. 6-14-5 (174.5 mg), and Fr. 6-14-6 (101.5 $\mathrm{mg})\}$. Fraction $6-14-5(174.5 \mathrm{mg})$ was further purified by HPLC [Cosmosil 5C C_{18}-MS-II, $\mathrm{CH}_{3} \mathrm{CN}-1 \%$ aqueous AcOH (40:60)] to furnish perennisoside I ($\mathbf{1}, 122.4 \mathrm{mg}, 0.0122 \%$). Fraction 7 (10.11 g) was subjected by reversed-phase silica gel column chromatography [300 g , $\left.\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(20: 80 \rightarrow 30: 70 \rightarrow 40: 60 \rightarrow 50: 50 \rightarrow 70: 30) \rightarrow \mathrm{MeOH}\right]$ to afford nine fractions [Fr. 7-1 (796.8 mg), Fr. 7-2 (2520.6 mg), Fr. 7-3 (641.1 mg), Fr. 7-4 (713.4 mg), Fr. 7-5 (1910.7 mg), Fr. 7-6 (3098.7 $\mathrm{mg})$, Fr. $7-7(257.8 \mathrm{mg})$, Fr. 7-8 (286.5 mg), and Fr. 7-9 (361.2 mg)]. Fraction 7-4 (713.4 mg) was separated by HPLC [Cosmosil 5C 18 -MSII, $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (22:16:62)] to afford six fractions \{Fr. 7-4-1 (57.7 mg), Fr. 7-4-2 (57.9 mg), Fr. 7-4-3 (36.4 mg), Fr. 7-4-4 (41.4 $\mathrm{mg})$, Fr. 7-4-5 [= astrbatanoside D $(\mathbf{9}, 174.5 \mathrm{mg}, 0.0063 \%)$], and Fr. 7-4-6 (80.0 mg) \}. Fraction 7-5 (1910.7 mg) was further purified by HPLC [Cosmosil 5C ${ }_{18}$-MS-II, $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(26: 16: 58)$] to afford 10 fractions [Fr. 7-5-1 (174.1 mg), Fr. 7-5-2 (150.2 mg), Fr. 7-5-3 (272.3 mg), Fr. 7-5-4 (228.7 mg), Fr. 7-5-5 (135.4 mg), Fr. 7-5-6 (87.1 mg), Fr. 7-5-7 (70.7 mg), Fr. 7-5-8 (136.4 mg), Fr. 7-5-9 (68.6 mg), and Fr. 7-5-10 (153.9 mg)]. Fraction 7-5-6 (87.1 mg) was further purified by $\mathrm{HPLC}\left[C o s m o s i 15 \mathrm{C}_{18}-\mathrm{MS}-\mathrm{II}, \mathrm{CH}_{3} \mathrm{CN}-\mathrm{MeOH}-\right.$ $\mathrm{H}_{2} \mathrm{O}$ (26:16:58)] to furnish perennisoside IV (4, $26.4 \mathrm{mg}, 0.0012 \%$). Fraction 7-5-7 (70.7 mg) was further purified by HPLC [Cosmosil $5 \mathrm{C}_{18}$-MS-II, $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (26:16:58)] to furnish perennisoside III ($\mathbf{3}, 31.5 \mathrm{mg}, 0.0014 \%$). Fraction 7-6 (450.5 mg) was further purified by HPLC [Cosmosil $5 \mathrm{C}_{18}-\mathrm{MS}-\mathrm{II}, \mathrm{CH}_{3} \mathrm{CN}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (30:16:54)] to furnish perennisosides $V(5,14.2 \mathrm{mg}, 0.0042 \%)$ and VI ($6,20.4 \mathrm{mg}, 0.0060 \%$). Fraction $8(16.09 \mathrm{~g})$ was subjected to reversed-phase silica gel column chromatography $[300 \mathrm{~g}$, $\left.\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(20: 80 \rightarrow 30: 70 \rightarrow 40: 60 \rightarrow 50: 50 \rightarrow 70: 30) \rightarrow \mathrm{MeOH}\right]$ to afford nine fractions [Fr. 8-1 (3977.2 mg), Fr. 8-2 (759.6 mg), Fr. 8-3 (774.2 mg), Fr. 8-4 (5033.2 mg), Fr. 8-5 (427.2 mg), Fr. 8-6 (946.7 mg), Fr. 8-7 (2280.8 mg), Fr. 8-8 (2189.0 mg), and Fr. $8-9(710.1 \mathrm{mg})]$. Fraction $8-7(960.0 \mathrm{mg})$ was separated by HPLC [Cosmosil 5C C_{18}-MS-II, $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (22:16:62)] to afford nine fractions \{Fr. 8-7-1 (38.6 mg), Fr. 8-7-2 [= bellissaponin BS6 ($\mathbf{1 1}, 43.6 \mathrm{mg}, 0.0044 \%)]$, Fr. 8-7-3 (52.7 mg), Fr. 8-7-4 (39.4 mg), Fr. 8-7-5 (57.6 mg), Fr. 8-7-6 (133.1 mg), Fr. 8-7-7 (126.6 mg), Fr. 8-7-8 (119.9 mg), and Fr. 8-7-9 (46.7 mg) \}. Fraction 8-8 (506.5 mg) was separated by HPLC [Cosmosil $5 \mathrm{C}_{18}-\mathrm{MS}-\mathrm{II}, \mathrm{CH}_{3} \mathrm{CN}-$ $\mathrm{MeOH}-1 \%$ aqueous AcOH (20:60:64)] to give 11 (102.4 mg , $0.019 \%)$.
Perennisoside I (1): amorphous powder; $[\alpha]^{26}{ }_{\mathrm{D}}+16.1$ (c 3.06, MeOH); IR (KBr) $\nu_{\max } 3442,1744,1655,1254,1075 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR
data, see Table $1 ;{ }^{13} \mathrm{C}$ NMR data, see Table 2; positive-ion FABMS $m / z 1065[\mathrm{M}+\mathrm{Na}]^{+}$; negative-ion FABMS $m / z, 1041[\mathrm{M}-\mathrm{H}]^{-}, 879$ $\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{5}\right]^{-}, 529\left[\mathrm{M}-\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{O}_{15}\right]^{-}$; HRFABMS m/z 1065.5253 (calcd for $\mathrm{C}_{52} \mathrm{H}_{82} \mathrm{O}_{21} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 1065.5246$).

Perennisoside II (2): amorphous powder; $[\alpha]^{26}{ }_{\mathrm{D}}+19.5$ (c 2.76, $\mathrm{MeOH}) ; \mathrm{IR}(\mathrm{KBr}) \nu_{\max } 3445,1745,1655,1252,1070 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR data, see Table 1; ${ }^{13} \mathrm{C}$ NMR data, see Table 2; positive-ion FABMS $\mathrm{m} / \mathrm{z} 1065\left[\mathrm{M}+\mathrm{Na}^{+}\right.$; negative-ion FABMS $\mathrm{m} / \mathrm{z} 1041[\mathrm{M}-\mathrm{H}]^{-}, 879$ $\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{5}\right]^{-}, 529\left[\mathrm{M}-\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{O}_{15}\right]^{-} ;$HRFABMS $\mathrm{m} / \mathrm{z} 1065.5242$ (calcd for $\mathrm{C}_{52} \mathrm{H}_{82} \mathrm{O}_{21} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 1065.5246).

Perennisoside III (3): amorphous powder; $[\alpha]^{27}{ }_{\mathrm{D}}+1.7$ (c 2.09, MeOH); IR (KBr) $\nu_{\text {max }} 3445,1736,1655,1256,1074 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR data, see Table 1; ${ }^{13} \mathrm{C}$ NMR data, see Table 2; positive-ion FABMS $m / z 1185[\mathrm{M}+\mathrm{Na}]^{+}$; negative-ion FABMS $m / z 1161[\mathrm{M}-\mathrm{H}]^{-}, 999$ [$\left.\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{5}\right]^{-}, 649\left[\mathrm{M}-\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{O}_{15}\right]^{-}$; HRFABMS m/z 1185.5660 (calcd for $\mathrm{C}_{56} \mathrm{H}_{90} \mathrm{O}_{25} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}, 1185.5669\right.$).

Perennisoside IV (4): amorphous powder; $[\alpha]^{27}{ }_{\mathrm{D}}+4.6$ (c 1.80, $\mathrm{MeOH})$; IR (KBr) $v_{\max } 3440,1736,1655,1256,1076 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR data, see Table 3; ${ }^{13} \mathrm{C}$ NMR data, see Table 2; positive-ion FABMS $\mathrm{m} / \mathrm{z} 1185\left[\mathrm{M}+\mathrm{Na}^{+}\right.$; negative-ion FABMS m/z $1161[\mathrm{M}-\mathrm{H}]^{-}, 999$ $\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{5}\right]^{-}, 649\left[\mathrm{M}-\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{O}_{15}\right]^{-} ;$HRFABMS m/z 1185.5665 (calcd for $\mathrm{C}_{56} \mathrm{H}_{90} \mathrm{O}_{25} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 1185.5669).

Perennisoside V (5): amorphous powder; $[\alpha]^{25}{ }_{\mathrm{D}}+7.1$ (c 0.95 , MeOH); IR (KBr) $\nu_{\text {max }} 3440,1736,1655,1260,1074 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR data, see Table 3; ${ }^{13} \mathrm{C}$ NMR data, see Table 2; positive-ion FABMS $\mathrm{m} / \mathrm{z} 1185[\mathrm{M}+\mathrm{Na}]^{+}$; negative-ion FABMS $m / z 1161[\mathrm{M}-\mathrm{H}]^{-}, 999$ $\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{5}\right]^{-}, 691\left[\mathrm{M}-\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{O}_{14}\right]^{-}, 529\left[\mathrm{M}-\mathrm{C}_{24} \mathrm{H}_{41} \mathrm{O}_{19}\right]^{-}$; HRFABMS m/z 1185.5663 (calcd for $\mathrm{C}_{56} \mathrm{H}_{90} \mathrm{O}_{25} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 1185.5669).

Perennisoside VI (6): amorphous powder; $[\alpha]^{25}{ }_{\mathrm{D}}+8.8$ (c 1.35, MeOH); IR (KBr) $\nu_{\text {max }} 3440,1736,1656,1256,1075 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR data, see Table 3; ${ }^{13} \mathrm{C}$ NMR data, see Table 2; positive-ion FABMS $\mathrm{m} / \mathrm{z} 1185[\mathrm{M}+\mathrm{Na}]^{+}$; negative-ion FAB-MS $m / z 1161[\mathrm{M}-\mathrm{H}]^{-}, 999$ $\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{5}\right]^{-}, 837$ [$\left.\mathrm{M}-\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{10}\right]^{-}$; HRFABMS m/z 1185.5674 (calcd for $\mathrm{C}_{56} \mathrm{H}_{90} \mathrm{O}_{25} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 1185.5669$).

Perennisoside VII (7): amorphous powder; $\left[\alpha{ }^{25} \mathrm{D}+14.3\right.$ (c 0.71, $\mathrm{MeOH})$; IR (KBr) $\nu_{\max } 3445,1736,1655,1256,1077 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR data, see Table 3; ${ }^{13} \mathrm{C}$ NMR data, see Table 2; positive-ion FABMS $\mathrm{m} / \mathrm{z} 1227[\mathrm{M}+\mathrm{Na}]^{+}$; negative-ion FAB-MS $\mathrm{m} / \mathrm{z} 1203[\mathrm{M}-\mathrm{H}]^{-}, 1041$ $\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{5}\right]^{-}, 691\left[\mathrm{M}-\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{O}_{15}\right]^{-}, 529\left[\mathrm{M}-\mathrm{C}_{26} \mathrm{H}_{43} \mathrm{O}_{20}\right]^{-}$; HRFABMS m/z 1227.5780 (calcd for $\mathrm{C}_{58} \mathrm{H}_{92} \mathrm{O}_{26} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 1227.5775).

Deacylation of Perennisosides I (1), II (2), III (3), IV (4), V (5), VI (6), and VII (7). A solution of perennisoside I ($\mathbf{1}, 12.4 \mathrm{mg}$) in 0.5% sodium methoxide $(\mathrm{NaOMe})-\mathrm{MeOH}$ was stirred at room temperature for 3 h . The reaction mixture was neutralized with Dowex HCR-W2 (H^{+}form), and the resin was removed by filtration. Evaporation of the solvent from the filtrate under reduced pressure gave a residue, which was purified by HPLC [Cosmosil $5 \mathrm{C}_{18}$-MS-II, $\left.\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(70: 30)\right]$ to furnish desacyl-perennisoside $\mathrm{I}(\mathbf{1 a}, 11.1 \mathrm{mg}$, 97.4\%). Using the same procedure, desacyl-perennisoside II (2a, 10.8 $\mathrm{mg}, 96.4 \%$), besysaponin $\mathrm{U}_{\mathrm{D} 2}$ ($\mathbf{3 a}, 4.8 \mathrm{mg}, 92.3 \%$ from 3; 4.4 mg , 91.3\% from 5), and desacyl-perennisoside IV ($\mathbf{4 a}, 4.6 \mathrm{mg}, 91.8 \%$ from $4 ; 9.0 \mathrm{mg}, 95.3 \%$ from $\mathbf{6} ; 2.1 \mathrm{mg}, 90.3 \%$ from 7) were prepared from perennisosides II ($\mathbf{2}, 12.2 \mathrm{mg}$), III ($\mathbf{3}, 5.4 \mathrm{mg})$, IV $(\mathbf{4}, 5.2 \mathrm{mg}), \mathrm{V}(\mathbf{5}$, $5.0 \mathrm{mg})$, VI ($6,9.7 \mathrm{mg}$), and VII ($7,2.5 \mathrm{mg}$).
Desacyl-perennisoside I (1a): amorphous powder; $[\alpha]^{28}{ }_{\mathrm{D}}+14.7$ (c $0.81, \mathrm{MeOH})$; IR (KBr) $\nu_{\max } 3445,1736,1655,1255,1075 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR data, see Table $1 ;{ }^{13} \mathrm{C}$ NMR data, see Table 2; positive-ion FABMS m/z $981[\mathrm{M}+\mathrm{Na}]^{+}$; negative-ion FABMS m/z 957 [M -$\mathrm{H}]^{-}, 794\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{5}\right]^{-}, 649\left[\mathrm{M}-\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{O}_{9}\right]^{-}, 487\left[\mathrm{M}-\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{O}_{14}\right]^{-}$; HRFABMS m/z 981.5031 (calcd for $\mathrm{C}_{48} \mathrm{H}_{78} \mathrm{O}_{19} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 981.5035).

Desacyl-perennisoside II (2a): amorphous powder; $\left[\alpha{ }^{28}{ }^{28}+15.8\right.$ (c $0.59, \mathrm{MeOH})$; IR (KBr) $\nu_{\text {max }} 3445,1740,1655,1260,1074 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR data, see Table $1 ;{ }^{13} \mathrm{C}$ NMR data, see Table 2; positive-ion FABMS $m / z 981[\mathrm{M}+\mathrm{Na}]^{+}$; negative-ion FAB-MS $m / z 957$ [M -$\mathrm{H}]^{-}, 794\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{5}\right]^{-}, 649\left[\mathrm{M}-\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{O}_{9}\right]^{-}, 487\left[\mathrm{M}-\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{O}_{14}\right]^{-}$; HRFABMS m/z 981.5030 (calcd for $\mathrm{C}_{48} \mathrm{H}_{78} \mathrm{O}_{19} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 981.5035).

Desacyl-perennisoside IV (4a): amorphous powder; $[\alpha]^{25}$ D +7.2 (c $1.00, \mathrm{MeOH})$; IR (KBr) $\nu_{\text {max }} 3440,1736,1655,1260,1075 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR data, see Table 3; ${ }^{13} \mathrm{C}$ NMR data, see Table 2; positive-ion FABMS $m / z 1143[\mathrm{M}+\mathrm{Na}]^{+}$; negative-ion FAB-MS $m / z 1119[\mathrm{M}-$
$\mathrm{H}]^{-}, 957\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{5}\right]^{-}, 649\left[\mathrm{M}-\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{O}_{14}\right]^{-}, 487[\mathrm{M}-$ $\left.\mathrm{C}_{24} \mathrm{H}_{41} \mathrm{O}_{19}\right]^{-}$; HRFABMS $m / z 1143.5568$ (calcd for $\mathrm{C}_{54} \mathrm{H}_{88} \mathrm{O}_{24} \mathrm{Na}[\mathrm{M}+$ Na^{+}, 1143.5563).

Acid Hydrolysis of 1a, 2a, and 4a. Solutions of 1a (5.5 mg), 2a $(2.0 \mathrm{mg})$, and $\mathbf{4 a}(2.0 \mathrm{mg})$ in 5% aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}-1,4$-dioxane ($1: 1,1$ mL) were heated under reflux for 1 h . After cooling, the reaction mixture was neutralized with Amberlite IRA-400 (OH^{-}form) and the resin was filtered. On removal of the solvent from the filtrate under reduced pressure, the residue was partitioned in an $\mathrm{EtOAc}-\mathrm{H}_{2} \mathrm{O}$ (1:1) mixture, and the solvent was removed in vacuo from the EtOAc-soluble fraction and an aqueous phase, respectively. The EtOAc-soluble fraction was purified by HPLC [Cosmosil $5 \mathrm{C}_{18}$-MS-II, $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (80:20)] to furnish bayogenin ($\mathbf{1 b}, 1.2 \mathrm{mg}, 67.4 \%$ from 1a; $1.1 \mathrm{mg}, 61.8 \%$ from $\mathbf{2 a} ; 0.5 \mathrm{mg}, 57.5 \%$ from 4a), respectively. In turn, the aqueous layer was subjected to HPLC analysis under the following conditions, respectively: HPLC column, Kaseisorb LC $\mathrm{NH}_{2}-60-5,4.6 \mathrm{~mm}$ i.d. \times 250 mm (Tokyo Kasei Co., Ltd., Tokyo, Japan); detection, optical rotation [Shodex OR-2 (Showa Denko Co., Ltd., Tokyo, Japan); mobile phase, $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ (85:15); flow rate $\left.0.5 \mathrm{~mL} / \mathrm{min}\right]$. Identification of L-rhamnose (i) from 1a, 2a, and 4a, and d-glucose (ii) from 1a and $\mathbf{4 a}$, and D-galactose (iii) from 2a and 4a present in the aqueous layer was carried out by comparison of their retention times and optical rotations with those of an authentic samples. t_{R} : (i) 12.0 min (negative optical rotation), (ii) 20.7 min (positive optical rotation), and (iii) 22.2 \min (positive optical rotation).

Bioassay Method. Animals. Male ddY mice weighing about $25-30 \mathrm{~g}$ were purchased from Kiwa Laboratory Animal Co., Ltd., Wakayama, Japan. The animals were housed at a constant temperature of $23 \pm 2{ }^{\circ} \mathrm{C}$ and were fed a standard laboratory chow (MF, Oriental Yeast Co., Ltd., Tokyo, Japan). The animals were fasted for $24-26 \mathrm{~h}$ prior to the beginning of the experiment, but were allowed free access to tap water. All of the experiments were performed with conscious mice unless otherwise noted. The experimental protocol was approved by the Experimental Animal Research Committee at Kyoto Pharmaceutical University.

Inhibitory Effect on Serum Triglyceride (TG) Elevation in Olive Oil-Treated Mice. Each test sample was administered orally to fasted mice and olive oil ($5 \mathrm{~mL} / \mathrm{kg}$) was administered po 30 min thereafter. Blood was collected from the infraorbital venosus plexus, 2, 4, and 6 h after olive oil treatment. Serum TG was determined by enzymatic method using a triglyceride E test (Wako Pure Chemical Industries Ltd., Osaka, Japan). ${ }^{25,26}$

Statistics. Values were expressed as means \pm SEM. For statistical analysis, one-way analysis of variance followed by Dunnett's test was used.

Acknowledgment. M.Y., H.M., and S.N. were supported by the 21st COE Program, Academic Frontier Project, and a Grant-in-Aid for Scientific Research from MEXT (the Ministry of Education, Culture, Sports, Science and Technology of Japan). O.M. and T.M. were supported by a High-tech Research Center Project (2007-2011) and a Grant-in-Aid for Scientific Research from MEXT.

Supporting Information Available: Inhibitory effects of the MeOH extract and its EtOAc-soluble fraction and MeOH - and $\mathrm{H}_{2} \mathrm{O}$-eluted fractions from the flowers of Bellis perennis on serum triglyceride elevation in olive oil-treated mice (Table S1). Selected HMBC correlations of perennisosides II-VII (2-7) (Figure S1). This information is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

(1) This paper is number 20 in the series "Medicinal Flowers". For paper number 19, see: Yoshikawa, M.; Sugimoto, S.; Kato, Y.; Nakamura, S.; Wang, T.; Yamashita, C.; Matsuda, H. Helv. Chim. Acta, submitted.
(2) PDR for Herbal Medicines 3rd Edition; Thomson Healthcare U.S.A.: Montvale, NJ, 2004; pp 877-878.
(3) Schöpke, T.; Wray, V.; Rzazewska, B.; Hiller, K. Phytochemistry 1991, 30, 627-631.
(4) Li, W.; Asada, Y.; Koike, K.; Nikaido, T.; Furuya, T.; Yoshikawa, T. Tetrahedron 2005, 61, 2921-2929.
(5) Hiller, K.; Schöpke, T.; Wray, V.; Schulten, H. R. Pharmazie 1988, 43, 850-852.
(6) Schöpke, T.; Wray, V.; Kunath, A.; Hiller, K. Pharmazie 1990, 45, 870-871.
(7) Schöpke, T.; Wray, V.; Rzazewska, B.; Hiller, K. Phytochemistry 1991, 30, 627-631.
(8) Schöpke, T.; Wray, V.; Kunath, A.; Hiller, K. Phytochermistry 1992, 31, 2555-2557.
(9) Schöpke, T.; Hiller, K. Sci. Pharm. 1996, 64, 663-668.
(10) Schöpke, T.; Hiller, K. J. Nat. Prod. 1994, 57, 1279-1282.
(11) Glensk, M.; Wray, V.; Nimtz, M.; Schöpke, T. Sci. Pharm. 2001, 69, 69-73.
(12) Toki, K.; Saito, N.; Honda, T. Phytochemistry 1991, 30, 3769-3771.
(13) Gudej, J.; Nazaruk, J. Fitoterapia 2001, 72, 839-840.
(14) Avato, P.; Tava, A. Phytochemistry 1995, 40, 141-147.
(15) Avato, P.; Vitali, C.; Mongelli, P.; Tava, A. Planta Med. 1997, 63, 503-507.
(16) Schöpke, T.; Agha, M. I. H.; Wray, V.; Hiller, K. Phytochemistry 1994, 36, 449-453.
(17) Shao, Y.; Zhou, B.-N.; Ma, K.; Wu, H.-M. Planta Med. 1995, 61, 246-249.
(18) Schöpke, T.; Thiele, H.; Hiller, K. J. Nat. Prod. 1996, 59, 939-943.
(19) The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1}-\mathbf{7}, \mathbf{1} \mathbf{a}, \mathbf{2} \mathbf{a}$, and $\mathbf{4}$ a were assigned with the aid of distortionless enhancement by polarization transfer (DEPT), double quantum filter correlation spectroscopy (DQF COSY), heteronuclear multiple quantum coherence (HMQC), heteronuclear multiple bond connectivity (HMBC), and total correlation spectroscopy (TOCSY) experiments.
(20) Kasai, R.; Miyakoshi, M.; Nie, R.-L.; Zhou, J.; Matsumoto, K.; Morita, T.; Nishi, M.; Miyahara, K.; Tanaka, O. Phytochemistry 1988, 27, 1439-1446.
(21) Yoshikawa, M.; Xu, F.; Morikawa, T.; Pongpiriyadacha, Y.; Nakamura, S.; Asao, Y.; Kumahara, A.; Matsuda, H. Chem. Pharm. Bull. 2007, 55, 308-316.
(22) Schöpke, T.; Hiller, K. J. Nat. Prod. 1996, 59, 355-359.
(23) Auwerx, L.; Schoonjans, K.; Fruchart, J. C.; Staels, B. J. Atheroscler. Thromb. 1996, 3, 81-89.
(24) McNeely, W.; Benfield, P. Drugs 1998, 56, 241-249.
(25) Yoshikawa, M.; Morikawa, T.; Yamamoto, K.; Kato, Y.; Nagatomo, A.; Matsuda, H. J. Nat. Prod. 2005, 68, 1360-1365.
(26) Ninomiya, K.; Matsuda, H.; Shimoda, H.; Nishida, N.; Kasajima, N.; Yoshino, T.; Morikawa, T.; Yoshikawa, M. Bioorg. Med. Chem. Lett. 2004, 14, 1943-1946.
NP8000333

[^0]: * To whom correspondence should be addressed. Tel: +81-75-595-4633. Fax: +81-75-595-4768. E-mail: myoshika@mb.kyoto-phu.ac.jp.
 ${ }^{\dagger}$ Kyoto Pharmaceutical University.
 * Kinki University.

[^1]: ${ }^{a}{ }_{i}$-Glc: inner Glc. ${ }^{b} t$-Glc: terminal Glc.

